Détail d'une fiche   Version PDF

AMIBIO (SR0781CR)

Algorithms and Models for Integrative BIOlogy

AMIB (SR0436BR) →  AMIBIO


Statut: Terminée

Responsable : Yann Ponty

Mots-clés de "A - Thèmes de recherche en Sciences du numérique - 2024" : Aucun mot-clé.

Mots-clés de "B - Autres sciences et domaines d'application - 2024" : Aucun mot-clé.

Domaine : Santé, biologie et planète numériques
Thème : Biologie numérique

Période : 01/01/2017 -> 31/12/2017
Dates d'évaluation :

Etablissement(s) de rattachement : <sans>
Laboratoire(s) partenaire(s) : <sans UMR>

CRI : Centre Inria de Saclay
Localisation : Laboratoire d'Informatique de l'Ecole polytechnique
Code structure Inria : 111084-0

Numéro RNSR : 201622254Z
N° de structure Inria: SR0781CR

Présentation

L’équipe projet AMIB(io) (Inria Saclay/LIX) est un groupe de recherche en bioinformatique muni d’un fort intérêt pour les aspects moléculaires de l’organisation cellulaire, ainsi que d’une forte appétence pour les Acides RiboNucléiques (ARN). Partant des séquences génomique et/ou de données de séquençage haut-débit, nous concentrons nos efforts sur la structure des macromolécules, leur interactions, évolution et, plus récemment, leur conception (rational design), afin de satisfaire les besoins croissants de la biologie synthétique. Dans ce but, nous développons des approches méthodologiques basées sur des abstractions des objets biologiques, choisies tant pour leur fidélité que pour leur potentiel de traitement in silico efficace. Un ensemble d’outils communs est développé au sein d’Amib, reposant sur une expertise forte en mathématique discrète, conception et analyse d’algorithmes. Notre but ultime est la conception d’outils logiciels finalisés, aidant à la formulation et au test d’hypothèses sur la relation séquence/structure/fonction en biologie moléculaire.


Axes de recherche

Our project addresses a central question in bioninformatics, namely the molecular levels of organization in the cells. The biological function of macromolecules such as proteins and nucleic acids relies on their dynamic structural nature and their ability to interact with many different partners. Therefore, folding and docking are still major issues in modern structural biology and we currently concentrate our efforts on structure and interactions and aim at a contribution to RNA design. With the recent development of computational methods aiming to integrate different levels of information, protein and nucleic acid assemblies studies should provide a better understanding on the molecular processes and machinery occurring in the cell and our research extends to several related issues incomparative genomics.

On the one hand, we study and develop methodological approaches for dealing with macromolecular structures and annotation: the challenge is to develop abstract models that are computationally tractable and biologically relevant. Our approach puts a strong emphasis on the modeling of biological objects using classic formalisms in computer science (languages, trees, graphs…), occasionally decorated and/or weighted to capture features of interest. To that purpose, we rely on the wide array of skills present in our team in the fields of combinatorics, formal languages and discrete mathematics. The resulting models are usually designed to be amenable to a probabilistic analysis, which can be used to assess the relevance of models, or test general hypotheses.

On the other hand, once suitable models are established we apply these computational approaches to several particular problems arising in fundamental molecular biology. One typically aims at designing new specialized algorithms and methods to efficiently compute properties of real biological objects. Tools of choice include exact optimization, relying heavily on dynamic programming, simulations, machine learning and discrete mathematics. As a whole, a common toolkit of computational methods is developed within the group.The trade-off between the biological accuracy of the model and the computational tractability or efficiency is to be addressed in a close partnership with experimental biology groups. One outcome is to provide software or platform elements to predict structural models and functional hypotheses.


Relations industrielles et internationales

L'équipe AMIB(io) développe actuellement des projets de recherche collaboratifs avec les institutions suivantes :

  • Computer Science Department at University McGill (Montréal, Canada)
  • Mathematics Department at Simon Fraser University (Vancouver, Canada)
  • Theoretical Biochemstry Institute at University of Vienna (Austria)
  • Biology department at Wuhan University (China)
  • Stanford University (USA)
  • Department of Computational Biology at the Vavilov Institute of General Genetics (Russia)