Base des structures de recherche Inria
MOdel for Data Analysis and Learning
MODAL (SR0434ZR) → MODAL
Statut:
En cours de fermeture
Responsable :
Cristian Preda
Mots-clés de "A - Thèmes de recherche en Sciences du numérique - 2023" :
A3.1.4. Données incertaines
, A3.1.10. Données hétérogènes
, A3.2.3. Inférence
, A3.3.2. Fouille de données
, A3.3.3. Analyse de données massives
, A3.4.1. Apprentissage supervisé
, A3.4.2. Apprentissage non supervisé
, A3.4.5. Méthodes bayésiennes
, A3.4.7. Méthodes à noyaux
, A5.2. Visualisation de données
, A5.9.2. Estimation, modélisation
, A6.2.3. Méthodes probabilistes
, A6.2.4. Méthodes statistiques
, A6.3.3. Traitement de données
, A9.2. Apprentissage
Mots-clés de "B - Autres sciences et domaines d'application - 2023" :
B2.2.3. Cancer
, B9.5.6. Science des données
, B9.6.3. Economie, finance
, B9.6.5. Sociologie
Domaine :
Mathématiques appliquées, calcul et simulation
Thème :
Optimisation, apprentissage et méthodes statistiques
Période :
01/01/2012 ->
31/12/2024
Dates d'évaluation :
19/03/2014 , 14/03/2018 , 01/12/2022
Etablissement(s) de rattachement :
CNRS, UNIVERSITE DE LILLE
Laboratoire(s) partenaire(s) :
LPP (UMR8524)
CRI :
Centre Inria de l'Université de Lille
Localisation :
Centre Inria de l'Université de Lille
Code structure Inria :
101037-1
Numéro RNSR :
201020969D
N° de structure Inria:
SR0518VR
The main focus of MODAL is to design generative models dealing with complex multivariate and/or heterogeneous data. Typical instances of such data are
Obviously, other widespread complex covariables are of interest such as ordinal, ranks, and intervals data.
From these generative models, a convenient and efficient statistical analysis remains to be carried out, leading to data analysis (visualization, clustering) and data learning (supervised and semi-supervised classification, density estimation).
MODAL is focused on generative models, that is models describing the generation process of data, unlike predictive models.
Generative models are of great interest. On the one hand, they are required in several statistical objectives such as clustering, semi-supervised classification, and density estimation, where predictive models are useless. On the other hand, these models enable data visualization. Indeed, they provide a full description of the data distribution, which gives access to several aspects of the data such as high density areas for instance.
In supervised classification, generative and predictive models directly compete with one another. However, the lack of flexibility of the generative approach, as opposed to the predictive one, is completely balanced by the use of model selection.
In addition, among generative approaches, parametric ones such as mixture models are preferred. Provided parameters are meaningful and parsimonious, mixture models allow valuable data interpretation.
Current collaborations
La position est calculée automatiquement avec les informations dont nous disposons. Si la position n'est pas juste, merci de fournir les coordonnées GPS à web-dgds@inria.fr