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Présentation
Aujourd'hui les plus grands supercalculateurs (classement du Top500) sont
composés de centaines de milliers de coeurs de calcul, atteignant des
performances de l'ordre du PetaFlops. Déplacer des données sur de telles
machines devient un goulet d'étranglement majeur. La situation devrait empirer
avec les machines exaflopiques, les capacités de transferts de données
augmentant moins vite que celles de calcul. Les unités de calcul disponibles
seront très probablement sous-utilisées, limitées par les capacités de transferts.
La hiérarchie mémoire et le stockage sur ces machines devrait changer
significativement avec l'avènement des mémoires non volatiles (NVRAM),
nécessitant de nouvelles approches pour la gestion des données. Les
mouvements de données sont par ailleurs une source importante de
consommation d'énergie, et donc une cible pertinente pour améliorer le
rendement énergétique des machines.

L'équipe DataMove se consacre à ces enjeux, menant des recherches sur
l'optimisation des mouvements de données pour le calcul intensif. DataMove
travaille sur trois axes de recherche:

Allocation de ressources prenant en compte les  données.
Intégration de la simulation numérique et de l'analyse de données
Etude empirique des grandes plateformes de calcul.

Le gestionnaire de tâches et de ressources est en charge de l'allocation des
ressources lors des demandes d'exécutions par les utilisateurs (quand et où
exécuter une application parallèle). L'augmentation du coût des mouvements
de données nécessite des politiques d'ordonnancement adaptées capables de
prendre en compte l'influence des communications internes à l'application, les
I/O ainsi que la congestion liée au trafic généré par les applications
concurrentes. Modéliser le comportement des applications, typiquement par des
techniques d'apprentissage, pour anticiper l'usage effectif des ressources sur
ces architectures est un autre enjeux critique pour améliorer les performances
(temps, énergie). L'ordonnanceur doit aussi gérer efficacement les nouveaux
types d'applications. Les plateformes haute performance doivent supporter de
plus en plus des tâches de traitements intensifs de données en plus des
traditionnels calculs de simulation numérique. En particulier, la masse toujours
croissante de données générées par les simulations numériques motive une
intégration plus poussée entre la simulation et l'analyse de résultats. L'objectif
est de réduire le trafic de données et d'accélérer l'analyse des résultats en
effectuant le traitement des résultats (compression, indexation, analyse,
visualisation, etc.) au plus proche de là ou elles sont créées. Cette approche,
appelée analyse in-situ, nécessite de revisiter le workflow traditionnel (calcul en
batch puis analyse postmortem). L'application devient un tout incluant la
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simulation numérique, les traitements in-situ et les I/O, motivant le
développement de stratégies d'allocation de ressources adaptées, de nouvelles
structures de données et d'algorithmes d'analyse massivement parallèles pour
entrelacer efficacement l'exécution des différents composants de l'application
et globalement en améliorer les performances.

Pour traiter ces problèmes, nous combinons recherche théorique et
développements pratiques en mode agile, pour concevoir des solutions
polyvalentes et efficaces répondant aux besoins du domaine d'application. Des
algorithmes aux performances prouvées sont développés et exp&

Axes de recherche

Data Aware Batch Scheduling
Large scale high performance computing platforms are becoming increasingly
complex. Determining efficient allocation and scheduling strategies that can
adapt to technological evolutions is a strategic and difficult challenge. We are
interested in scheduling jobs in hierarchical and heterogeneous large scale
platforms. On such platforms, application developers typically submit their jobs
in centralized waiting queues. The job management system aims at determining
a suitable allocation for the jobs, which all compete against each other for the
available computing resources. Performances are measured using different
classical metrics like maximum completion time or slowdown. Current systems
make use of very simple (but fast) algorithms that however rely on simplistic
platform and execution models, and thus, have limited performances.

For all target scheduling problems we aim to provide both theoretical analysis
and complementary analysis through simulations. Achieving meaningful results
will require strong improvements on existing models (on power for example)
and the design of new approximation algorithms with various objectives such as
stretch, reliability, throughput or energy consumption, while keeping in focus
the need for a low-degree polynomial complexity.

Algorithms
The most common batch scheduling policy is to consider the jobs according to
the First Come First Served order (FCFS) with backfilling (BF). BF is the most
widely used policy due to its easy and robust implementation and known
benefits such as high system utilization. It is well-known that this strategy does
not optimize any sophisticated function, but it is simple to implement and it
guarantees that there is no starvation (i.e. every job will be scheduled at some
moment).

More advanced algorithms are seldom used on production platforms due to both
the gap between theoretical models and practical systems and speed
constraints. When looking at theoretical scheduling problems, the generally
accepted goal is to provide polynomial algorithms (in the number of submitted
jobs and the number of involved computing units). However, with millions of
processing cores where every process and data transfer have to be individually
scheduled, polynomial algorithms are prohibitive as soon as the polynomial
degree is too large. The model of parallel tasks simplifies this problem by
bundling many threads and communications into single boxes, either rigid,
rectangular or malleable. Especially malleable tasks capture the dynamicity of
the execution. Yet these models are ill-adapted to heterogeneous platforms, as
the running time depends on more than simply the number of allotted
resources, and some of the common underlying assumptions on the speed-up
functions (such as monotony or concavity) are most often only partially verified.

In practice, the job execution times depend on their allocation (due to
communication interferences and heterogeneity in both computation and
communication), while theoretical models of parallel jobs usually consider jobs
as black boxes with a fixed (maximum) execution time. Though interesting and
powerful, the classical models (namely, synchronous PRAM model, delay, LogP)
and their variants (such as hierarchical delay), are not well-suited to large scale
parallelism on platforms where the cost of moving data is significant, non
uniform and may change over time. Recent studies are still refining such models
in order to take into account communication contentions more accurately while
remaining tractable enough to provide a useful tool for algorithm design.

Today, all algorithms in use in production systems are oblivious to
communications. One of our main goals is to design a new generation of
scheduling algorithms fitting more closely job schedules according to
platform topologies.

Locality Aware Allocations
Recently, we developed modifications of the standard back-filling algorithm
taking into account platform topologies. The proposed algorithms take into
account locality and contiguity in order to hide communication patterns within
parallel tasks. The main result here is to establish good lower bounds and small
approximation ratios for policies respecting the locality constraints. The
algorithms work in an online fashion, improving the global behavior of the
system while still keeping a low running time. These improvements rely mainly
on our past experience in designing approximation algorithms. Instead of
relying on complex networking models and communication patterns for
estimating execution times, the communications are disconnected from the
execution time. Then, the scheduling problem leads to a trade-off: optimizing
locality of communications on one side and a performance objective (like the
makespan or stretch) on the other side.

In the perspective of taking care of locality, other ongoing works include the
study of schedulers for platforms whose interconnection network is a static
structured topology (like the 3D-torus of the BlueWaters platform we work on in
collaboration with the Argonne National Laboratory). One main characteristic of
this 3D-torus platform is to provide I/O nodes at specific locations in the



topology. Applications generate and access specific data and are thus bounded
to specific I/O nodes. Resource allocations are constrained in a strong and
unusual way. This problem is close for actual hierarchical platforms. The
scheduler needs to compute a schedule such that I/O nodes requirements are
filled for each application while at the same time avoiding communication
interferences. Moreover, extra constraints can arise for applications requiring
accelerators that are gathered on the nodes at the edge of the network
topology.

While current results are encouraging, they are however limited in performance
by the low amount of information available to the scheduler. We look forward to
extend ongoing work by progressively increasing application and network
knowledge (by technical mechanisms like profiling or monitoring or by more
sophisticated methods like learning). It is also important to anticipate on
application resource usage in terms of compute units, memory as well as
network and I/Os to efficiently schedule a mix of applications with different
profiles. For instance, a simple solution is to partition the jobs as
"communication intensive" or "low communications". Such a tag could be
achieved by the users them selves or obtained by learning techniques. We could
then schedule low communications jobs using leftover spaces while taking care
of high communication jobs. More sophisticated options are possible, for
instance those that use more detailed communication patterns and networking
models. 

Data-Centric Processing
Exascale computing is shifting away from the traditional compute-centric
models to a more data-centric one. This is driven by the evolving nature of large
scale distributed computing, no longer dominated by pure computations but
also by the need to handle and analyze large volumes of data. These data can
be large databases of results, data streamed from a running application or
another scientific instrument (collider for instance). These new workloads call
for specific resource allocation strategies.

Data movements and storage are expected to be a major energy and
performance bottleneck on next generation platforms. Storage architectures are
also evolving, the standard centralized parallel file system being complemented
with local persistent storage (Burst Buffers, NVRAM). Thus, one data producer
can stage data on some nodes' local storage, requiring to schedule close by the
associated analytics tasks to limit data movements. This kind of configuration,
often referred as in situ analytics, is expected to become common as it enables
to switch from the traditional I/O intensive workflow (batch-processing followed
by post mortem analysis and visualization) to a more storage conscious
approach where data are processed as closely as possible to where and when
they are produced. By reducing data movements and scheduling the extra
processing on resources not fully exploited yet, in situ processing is expected to
have also a significant positive energetic impact. Analytics codes can be
executed in the same nodes than the application, often on dedicated cores
commonly called helper cores, or on dedicated nodes called stagging nodes.
The results are either forwarded to the users for visualization or saved to disk
through I/O nodes. In situ analytics can also take benefit of node local disks or
burst buffers to reduce data movements. Future job scheduling strategies
should take into account in situ processes in addition to the job allocation to
optimize both energy consumption and execution time. On the one hand, this
problem can be reduced to an allocation problem of extra asynchronous tasks
to idle computing units. But on the other hand, embedding analytics in
applications brings extra difficulties by making the application more
heterogeneous and imposing more constraints (data affinity) on the required
resources. Thus, the main point here is to develop efficient algorithms for
dealing with heterogeneity without increasing the global computational cost.

Learning
Another important issue is to adapt the job management system to deal with
the bad effects of uncertainties, which may be catastrophic in large scale
heterogeneous HPC platforms (jobs delayed arbitrarly far or jobs killed). A
natural question is then: is it possible to have a good estimation of the job and
platform parameters in order to be able to obtain a better scheduling ? Many
important parameters (like the number or type of required resources or the
estimated running time of the jobs) are asked to the users when they submit
their jobs. However, some of these values are not accurate and in many cases,
they are not even provided by the end-users. In DataMove, we propose to study
new methods for a better prediction of the characteristics of the jobs and their
execution in order to improve the optimization process. In particular, the
methods well-studied in the field of big data (in supervised Machine Learning,
like classical regression methods, Support Vector Methods, random forests,
learning to rank techniques or deep learning) could and must be used to
improve job scheduling in large scale HPC platforms. This topic received a great
attention recently in the field of parallel and distributed processing. A
preliminary study has been done recently by our team with the target of
predicting the job running times (called wall times). We succeeded to improve
significantly in average the reference EASY Back Filling algorithm by estimating
the wall time of the jobs, however, this method leads to big delay for the stretch
of few jobs. Even if we succeed in determining more precisely hidden
parameters, like the wall time of the jobs, this is not enough to determine an
optimized solution. The shift is not only to learn on dedicated parameters but
also on the scheduling policy. The data collected from the accounting and
profiling of jobs can be used to better understand the needs of the jobs and
through learning to propose adaptations for future submissions. The goal is to
propose extensions to further improve the job scheduling and improve the
performance and energy efficiency of the application. For instance preference
learning may enable to compute on-line new priorities to back-fill the ready
jobs.

Multi-objective Optimization



Several optimization questions that arise in allocation and scheduling problems
lead to the study of several objectives at the same time. The goal is then not a
single optimal solution, but a more complicated mathematical object that
captures the notion of trade-off. In broader terms, the goal of multi-objective
optimization is not to externally arbitrate on disputes between entities with
different goals, but rather to explore the possible solutions to highlight the
whole range of interesting compromises. A classical tool for studying such multi-
objective optimization problems is to use Pareto curves. However, the full
description of the Pareto curve can be very hard because of both the number of
solutions and the hardness of computing each point. Addressing this problem
will opens new methodologies for the analysis of algorithms.

To further illustrate this point here are three possible case studies with
emphasis on conflicting interests measured with different objectives. While
these cases are good representatives of our HPC context, there are other
pertinent trade-offs we may investigate depending on the technology evolution
in the coming years. This enumeration is certainly not limitative.

Energy versus Performance. The classical scheduling algorithms designed
for the purpose of performance can no longer be used because performance
and energy are contradictory objectives to some extent. The scheduling
problem with energy becomes a multi-objective problem in nature since the
energy consumption should be considered as equally important as performance
at exascale. A global constraint on energy could be a first idea for determining
trade-offs but the knowledge of the Pareto set (or an approximation of it) is also
very useful.

Administrators versus application developers. Both are naturally
interested in different objectives: In current algorithms, the performance is
mainly computed from the point of view of administrators, but the users should
be in the loop since they can give useful information and help to the
construction of better schedules. Hence, we face again a multi-objective
problem where, as in the above case, the approximation of the Pareto set
provides the trade-off between the administrator view and user demands.
Moreover, the objectives are usually of the same nature. For example, max
stretch and average stretch are two objectives based on the slowdown factor
that can interest administrators and users, respectively. In this case the study of
the norm of stretch can be also used to describe the trade-off (recall that
the L1L1-norm corresponds to the average objective while the L∞L∞-norm to
the max objective). Ideally, we would like to design an algorithm that gives good
approximate solutions at the same time for all norms. The L2L2 or L3L3-norm
are useful since they describe the performance of the whole schedule from the
administrator point of view as well as they provide a fairness indication to the
users. The hard point here is to derive theoretical analysis for such complicated
tools.

Resource Augmentation. The classical resource augmentation models, i.e.
speed and machine augmentation, are not sufficient to get good results when
the execution of jobs cannot be frequently interrupted. However, based on a
resource augmentation model recently introduced, where the algorithm may
reject a small number of jobs, some members of our team have given the first
interesting results in the non-preemptive direction. In general, resource
augmentation can explain the intuitive good behavior of some greedy
algorithms while, more interestingly, it can give ideas for new algorithms. For
example, in the rejection context we could dedicate a small number of nodes for
the usually problematic rejected jobs. Some initial experiments show that this
can lead to a schedule for the remaining jobs that is very close to the optimal
one.

Empirical Studies of Large Scale
Platforms
Experiments or realistic simulations are required to take into account the impact
of allocations and assess the real behavior of scheduling algorithms. While
theoretical models still have their interest to lay the groundwork for algorithmic
designs, the models are necessarily reflecting a purified view of the reality. As
transferring our algorithm in a more practical setting is an important part of our
creed, we need to ensure that the theoretical results found using simplified
models can really be transposed to real situations. On the way to exascale
computing, large scale systems become harder to study, to develop or to
calibrate because of the costs in both time and energy of such processes. It is
often impossible to convince managers to use a production cluster for several
hours simply to test modifications in the RJMS. Moreover, as the existing RJMS
production systems need to be highly reliable, each evolution requires several
real scale test iterations. The consequence is that scheduling algorithms used in
production systems are mostly outdated and not customized correctly. To
circumvent this pitfall, we need to develop tools and methodologies for
alternative empirical studies, from analysis of workload traces, to job models,
simulation and emulation with reproducibility concerns.

Workload Traces with Resource Consumption
Workload traces are the base element to capture the behavior of complete
systems composed of submitted jobs, running applications, and operating tools.
These traces must be obtained on production platforms to provide relevant and
representative data. To get a better understanding of the use of such systems,
we need to look at both, how the jobs interact with the job management system,
and how they use the allocated resources. We propose a general workload trace
format that adds jobs resource consumption to the commonly used SWF
(Standard Workload Format:
http://www.cs.huji.ac.il/labs/parallel/workload/swf.html) workload trace format.
This requires to instrument the platforms, in particular to trace resource
consumptions like CPU, data movements at memory, network and I/O levels,
with an acceptable performance impact. In a previous work we studied and
proposed a dedicated job monitoring tool whose impact on the system has been



measured as lightweight (0.35%% speed-down) with a 1 minute sampling rate.
Other tools also explore job monitoring, like TACC Stats. A unique feature from
our tool is its ability to monitor distinctly jobs sharing common nodes.

Collected workload traces with jobs resource consumption will be publicly
released and serve to provide data for works presented in Section 4.1. The trace
analysis is expected to give valuable insights to define models encompassing
complex behaviours like network topology sensitivity, network congestion and
resource interferences.

We expect to join efforts with partners for collecting quality traces (ATOS/Bull,
Ciment meso center, Joint Laboratory on Extreme Scale Computing) and will
collaborate with the Inria team POLARIS for their analysis.

Simulation
Simulations of large scale systems are faster by multiple orders of magnitude
than real experiments. Unfortunately, replacing experiments with simulations is
not as easy as it may sound, as it brings a host of new problems to address in
order to ensure that the simulations are closely approximating the execution of
typical workloads on real production clusters. Most of these problems are
actually not directly related to scheduling algorithms assessment, in the sense
that the workload and platform models should be defined independently from
the algorithm evaluations, in order to ensure a fair assessment of the
algorithms' strengths and weaknesses. These research topics (namely platform
modeling, job models and simulator calibration) are addressed in the other
subsections.

We developed an open source platform simulator within DataMove (in
conjunction with the OAR development team) to provide a widely distributable
test bed for reproducible scheduling algorithm evaluation. Our simulator, named
Batsim, allows to simulate the behavior of a computational platform executing a
workload scheduled by any given scheduling algorithm. To obtain sound
simulation results and to broaden the scope of the experiments that can be
done thanks to Batsim, we did not chose to create a (necessarily limited)
simulator from scratch, but instead to build on top of the SimGrid simulation
framework.

To be open to as many batch schedulers as possible, Batsim decouples the
platform simulation and the scheduling decisions in two clearly-separated
software components communicating through a complete and documented
protocol. The Batsim component is in charge of simulating the computational
resources behaviour whereas the scheduler component is in charge of taking
scheduling decisions. The scheduler component may be both a resource and a
job management system. For jobs, scheduling decisions can be to execute a job,
to delay its execution or simply to reject it. For resources, other decisions can be
taken, for example to change the power state of a machine i.e. to change its
speed (in order to lower its energy consumption) or to switch it on or off. This
separation of concerns also enables interfacing with potentially any commercial
RJMS, as long as the communication protocol with Batsim is implemented. A
proof of concept is already available with the OAR RJMS.

Using this test bed opens new research perspectives. It allows to test a large
range of platforms and workloads to better understand the real behavior of our
algorithms in a production setting. In turn, this opens the possibility to tailor
algorithms for a particular platform or application, and to precisely identify the
possible shortcomings of the theoretical models used.

Job and Platform Models
The central purpose of the Batsim simulator is to simulate job behaviors on a
given target platform under a given resource allocation policy. Depending on
the workload, a significant number of jobs are parallel applications with
communications and file system accesses. It is not conceivable to simulate
individually all these operations for each job on large plaforms with their
associated workload due to implied simulation complexity. The challenge is to
define a coarse grain job model accurate enough to reproduce parallel
application behavior according to the target platform characteristics. We will
explore models similar to the BSP (Bulk Synchronous Program) approach that
decomposes an application in local computation supersteps ended by global
communications and a global synchronization. The model parameters will be
established by means of trace analysis as discussed previously, but also by
instrumenting some parallel applications to capture communication patterns.
This instrumentation will have a significant impact on the concerned application
performance, restricting its use to a few applications only. There are a lot of
recurrent applications executed on HPC platform, this fact will help to reduce
the required number of instrumentations and captures. To assign each job a
model, we are considering to adapt the concept of application signatures as
proposed in. Platform models and their calibration are also required. Large parts
of these models, like those related to network, are provided by Simgrid. Other
parts as the filesystem and energy models are comparatively recent and will
need to be enhanced or reworked to reflect the HPC platform evolutions. These
models are then generally calibrated by running suitable benchmarks.

Emulation and Reproducibility
The use of coarse models in simulation implies to set aside some details. This
simplification may hide system behaviors that could impact significantly and
negatively the metrics we try to enhance. This issue is particularly relevant
when large scale platforms are considered due to the impossibility to run tests
at nominal scale on these real platforms. A common approach to circumvent this
issue is the use of emulation techniques to reproduce, under certain conditions,
the behavior of large platforms on smaller ones. Emulation represents a natural
complement to simulation by allowing to execute directly large parts of the
actual evaluated software and system, but at the price of larger compute times
and a need for more resources. The emulation approach was chosen in to
compare two job management systems from workload traces of the CURIE

https://irabot.inria.fr/RA2017/datamove/uid15.html


supercomputer (80000 cores). The challenge is to design methods and tools to
emulate with sufficient accuracy the platform and the workload (data
movement, I/O transfers, communication, applications interference). We will also
intend to leverage emulation tools like Distem from the MADYNES team. It is
also important to note that the Batsim simulator also uses emulation techniques
to support the core scheduling module from actual RJMS. But the integration
level is not the same when considering emulation for larger parts of the system
(RJMS, compute node, network and filesystem).

Replaying traces implies to prepare and manage complex software stacks
including the OS, the resource management system, the distributed filesystem
and the applications as well as the tools required to conduct experiments.
Preparing these stacks generate specific issues, one of the major one being the
support for reproducibility. We propose to further develop the concept of
reconstructability to improve experiment reproducibility by capturing the build
process of the complete software stack. This approach ensures reproducibility
over time better than other ways by keeping all data (original packages, build
recipe and Kameleon engine) needed to build the software stack.

In this context, the Grid'5000  experimentation infrastructure that gives users
the control on the complete software stack is a crucial tool for our research
goals. We will pursue our strong implication in this infrastructure.

Integration of High Performance
Computing and Data Analytics
Data produced by large simulations are traditionally handled by an I/O layer that
moves them from the compute cores to the file system. Analysis of these data
are performed after reading them back from files, using some domain specific
codes or some scientific visualisation libraries like VTK. But writing and then
reading back these data generates a lot of data movements and puts under
pressure the file system. To reduce these data movements, the in situ
analytics paradigm proposes to process the data as closely as possible
to where and when the data are produced. Some early solutions emerged
either as extensions of visualisation tools or of I/O libraries like ADIOS. But
significant progresses are still required to provide efficient and flexible high
performance scientific data analysis tools. Integrating data analytics in the HPC
context will have an impact on resource allocation strategies, analysis
algorithms, data storage and access, as well as computer architectures and
software infrastructures. But this paradigm shift imposed by the machine
performance also sets the basis for a deep change on the way users work with
numerical simulations. The traditional workflow needs to be reinvented to make
HPC more user-centric, more interactive and turn HPC into a commodity tool for
scientific discovery and engineering developments. In this context DataMove
aims at investigating programming environments for in situ analytics with a
specific focus on task scheduling in particular, to ensure an efficient sharing of
resources with the simulation.

Programming Model and Software Architecture
In situ creates a tighter loop between the scientist and her/his simulation. As
such, an in situ framework needs to be flexible to let the user define and deploy
its own set of analysis. A manageable flexibility requires to favor simplicity and
understandability, while still enabling an efficient use of parallel resources.
Visualization libraries like VTK or Visit, as well as domain specific environments
like VMD have initially been developed for traditional post-mortem data analysis.
They have been extended to support in situ processing with some simple
resource allocation strategies but the level of performance, flexibility and ease
of use that is expected requires to rethink new environments. There is a need to
develop a middleware and programming environment taking into account in its
fundations this specific context of high performance scientific analytics.

Similar needs for new data processing architectures occurred for the emerging
area of Big Data Analytics, mainly targeted to web data on cloud-based
infrastructures. Google Map/Reduce and its successors like Spark or
Stratosphere/Flink have been designed to match the specific context of efficient
analytics for large volumes of data produced on the web, on social networks, or
generated by business applications. These systems have mainly been
developed for cloud infrastructures based on commodity architectures. They do
not leverage the specifics of HPC infrastructures. Some preliminary adaptations
have been proposed for handling scientific data in a HPC context. However,
these approaches do not support in situ processing.

Following the initial development of FlowVR, our middleware for in situ
processing, we will pursue our effort to develop a programming environment
and software architecture for high performance scientific data analytics. Like
FlowVR, the map/reduce tools, as well as the machine learning frameworks like
TensorFlow, adopted a dataflow graph for expressing analytics pipe-lines. We
are convinced that this dataflow approach is both easy to understand and yet
expresses enough concurrency to enable efficient executions. The graph
description can be compiled towards lower level representations, a mechanism
that is intensively used by Stratosphere/Flink for instance. Existing in situ
frameworks, including FlowVR, inherit from the HPC way of programming with a
thiner software stack and a programming model close to the machine. Though
this approach enables to program high performance applications, this is usually
too low level to enable the scientist to write its analysis pipe-line in a short
amount of time. The data model, i.e. the data semantics level accessible at the
framework level for error check and optimizations, is also a fundamental aspect
of such environments. The key/value store has been adopted by all map/reduce
tools. Except in some situations, it cannot be adopted as such for scientific data.
Results from numerical simulations are often more structured than web data,
associated with acceleration data structures to be processed efficiently. We will
investigate data models for scientific data building on existing approaches like
Adios or DataSpaces.

https://www.grid5000.fr


Resource Sharing
To alleviate the I/O bottleneck, the in situ paradigm proposes to start processing
data as soon as made available by the simulation, while still residing in the
memory of the compute node. In situ processings include data compression,
indexing, computation of various types of descriptors (1D, 2D, images, etc.). Per
se, reducing data output to limit I/O related performance drops or keep the
output data size manageable is not new. Scientists have relied on solutions as
simple as decreasing the frequency of result savings. In situ processing
proposes to move one step further, by providing a full fledged processing
framework enabling scientists to more easily and thoroughly manage the
available I/O budget.

The most direct way to perform in situ analytics is to inline computations
directly in the simulation code. In this case, in situ processing is executed in
sequence with the simulation that is suspended meanwhile. Though this
approach is direct to implement and does not require complex framework
environments, it does not enable to overlap analytics related computations and
data movements with the simulation execution, preventing to efficiently use the
available resources. Instead of relying on this simple time sharing approach,
several works propose to rely on space sharing where one or several cores per
node, called helper cores, are dedicated to analytics. The simulation
responsibility is simply to handle a copy of the relevant data to the node-local in
situ processes, both codes being executed concurrently. This approach often
lead to significantly beter performance than in-simulation analytics.

For a better isolation of the simulation and in situ processes, one solution
consists in offloading in situ tasks from the simulation nodes towards extra
dedicated nodes, usually called staging nodes. These computations are said to
be performed in-transit. But this approach may not always be beneficial
compared to processing on simulation nodes due to the costs of moving the
data from the simulation nodes to the staging nodes.

FlowVR enables to mix these different resources allocation strategies for the
different stages of an analytics pile-line. Based on a component model, the
scientist designs analytics workflows by first developing processing components
that are next assembled in a dataflow graph through a Python script. At runtime
the graph is instantiated according to the execution context, FlowVR taking care
of deploying the application on the target architecture, and of coordinating the
analytics workflows with the simulation execution.

But today the choice of the resource allocation strategy is mostly ad-hoc and
defined by the programmer. We will investigate solutions that enable a
cooperative use of the resource between the analytics and the simulation with
minimal hints from the programmer. In situ processings inherit from the
parallelization scale and data distribution adopted by the simulation, and must
execute with minimal perturbations on the simulation execution (whose actual
resource usage is difficult to know a priori). We need to develop adapted
scheduling strategies that operate at compile and run time. Because analysis
are often data intensive, such solutions must take into consideration data
movements, a point that classical scheduling strategies designed first for
compute intensive applications often overlook. We expect to develop new
scheduling strategies relying on the methodologies developed in Sec. 4.1.5.
Simulations as well as analysis are iterative processes exposing a strong spatial
and temporal coherency that we can take benefit of to anticipate their behavior
and then take more relevant resources allocation strategies, possibly based on
advanced learning algorithms or as developed in Section 4.1.

In situ analytics represent a specific workload that needs to be scheduled very
closely to the simulation, but not necessarily active during the full extent of the
simulation execution and that may also require to access data from previous
runs (stored in the file system or on specific burst-buffers). Several users may
also need to run concurrent analytics pipe-lines on shared data. This departs
significantly from the traditional batch scheduling model, motivating the need
for a more elastic approach to resource provisioning. These issues will be
conjointly addressed with research on batch scheduling policies (Sec. 4.1).

Co-Design with Data Scientists
Given the importance of users in this context, it is of primary importance that in
situ tools be co-designed with advanced users, even if such multidisciplinary
collaborations are challenging and require constant long term investments to
learn and understand the specific practices and expectations of the other
domain.

We will tightly collaborate with scientists of some application domains, like
molecular dynamics or fluid simulation, to design, develop, deploy and assess in
situ analytics scenarios, as already done with Marc Baaden, a computational
biologist from LBT.

We recently extended our collaboration network. We started in 2015 a PhD co-
advised with CEA DAM to investigate in situ analytics scenarios in the context of
atomistic material simulations. CEA DAM is a French energy lab hosting one of
the largest european supercomputer. They gather physicists, numerical
scientists as well as high performance computer engineers, making it a very
interesting partner for developing new scientific data analysis solutions. We also
got a national grant (2015-2018) to compute in situ statistics for multi-
parametric parallel studies with the research department of French power
company EDF. In this context we collaborate with statisticians and fluid
simulation experts to define in situ scenarios, revisit the statistic operators to be
amenable to in situ processing, and define an adapted in situ framework.

Relations industrielles et internationales

International Relationships

https://irabot.inria.fr/RA2017/datamove/uid15.html#uid20
https://irabot.inria.fr/RA2017/datamove/uid15.html
https://irabot.inria.fr/RA2017/datamove/uid15.html


For now many years we have been developing a very strong
collaboration with Brazilian teams, mainly in Porto Alegre and Sao
Paulo. We currently manage a CAPES/COFECUB program with UFRGS
(Universidade Federal do Rio Grande do Sul, Porto Alegre), and a
CNRS/COFECUB program with USP (University of São Paulo). 
We are partnering with the Polaris INRIA Team into the INRIA
associated Team Exase, a support grant for our collaboration 
with UFRGS. We are also strongly involved in the LICIA, a CNRS international
laboratory
between the LIG (Laboratoire d'Informatique de Grenoble) and 
UFRGS. Bruno Raffin is deputy scientific director of LICIA. We have a long record
of join publications and we co-advised many Brazilian PhD students.

We will enforce our collaboration with Argone National Laboratory
(ANL), which is hosting teams working on  I/O pacing and topology aware job
scheduling, and in-situ processing.

We are also participating to the INRIA-ILLINOIS-ANL-BSC-JSC-RIKEN/AICS Joint
Laboratory for
Extreme-Scale-Computing} (JLESC), initially set up by
the University of Illinois at Urbana Champaign (USA) and Inria
(France) in 2009, extended to Argonne National Laboratory (USA) in
2011, and more recently to other major players of the HPC area
including Barcelona Supercomputing Center (Spain), Jülich
Supercomputing Centre (Germany) and the Riken Advanced Institute for
Computational Science (Japan). It focuses on software challenges found in
extreme scale
high-performance computers, including scheduling and in-situ processing. The
JLESC organizes a workshop every 6 months 
we are participating to, enabling us to further enforce our collaboration with
ANL, but also to 
develop new collaborations.

We maintain a long term collaboration with Warsaw University, Polonia, on
fairness and energy optimisation issues for Exascale. We have an history of
several co-advised PhD students.

 

Industrial Relationships
Our transfer strategy is twofold: make most of our algorithms available to the
community through open source software, and develop partnerships  with
private companies through direct contracts or collaborative projects funded by
national or european agencies.

Large companies. We have developed long term collaborations with
large groups, like the HPC division of BULL/ATOS, or the R\&D
department  at the EDF power company. They already funded several
PhDs. We develop with them state of the art solutions adapted to their
specific problems. 
Small and medium-sized enterprises (SMEs). Optimizing
performance is a challenging problem for many SMEs that develop
solutions for distributed computing.  We will develop tight collaborations
with some of them (Ryax, TeamTo, ReactivIP, Stimergy, etc.), helping
them to push forward their competitive edge.

http://publish.illinois.edu/jointlab-esc/
http://publish.illinois.edu/jointlab-esc/
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