Axes de recherche

- Biomechanics
- Modeling
- Real-time simulation
- Numerical methods
- Meshing and topological changes
- Image-guided therapy
- Augmented reality
- Medical robotics
- Open source software
- Neuroscience
Relations industrielles et internationales

Academic collaborations

- ICube laboratory, Strasbourg, France: research on dynamic topologies for real-time FEM computation, and robotized needle tracking in soft tissues.
- MAGRIT team, Inria, Nancy: interventional radiology simulation and augmented reality in surgery.
- ASCLEPIOS team, Inria, Sophia Antipolis: joint development of the SOFA framework and cardiac electrophysiology using personalized FEM simulations for cardiac arrhythmia.
- CAMUS, Inria, Strasbourg, France: we have just started a two-year collaboration with CAMUS on the topic of automatic parallelism of real-time simulation. We will use and adapt methods developed by CAMUS to improve computation times of typical applications without significantly re-engineering the code.
- TIMC, Grenoble, France: we are collaborating with Yohan Payan (DR CNRS) on the modeling and simulation of the brain shift. A PhD thesis is actually taking place on that topic. Other areas of interest are in the field of advanced soft tissue modeling and computer aided surgery.
- CIMIC, University College London, UK: our collaboration with UCL aims at making advances in image-guided surgery, by developing new methods for robust tissue registration and tracking.
- Team Legato, University of Luxembourg: real-time soft tissue cutting simulation and error-driven adaptive refinement of FEM meshes.
- SINTEF, Norway: we started our collaborating with SINTEF in the context of the FP7 European project RASimAs, and we are continuing this collaboration on computer-aided surgery through a H2020 project (HiPerNav).
- Harvard Biorobotics lab, Cambridge, USA: this group focuses on the role of sensing and mechanical design in motor control, in both robots and humans. This work draws upon diverse disciplines, including biomechanics, system analysis, and physiology. We started a collaboration on inverse problems for identifying optimal areas of cardiac ablation using our work on electro-mechanical modeling of the heart.
- Masaryk University, Czech Republic: we had an extensive collaboration with Igor Peterlik, leading to 7 publications over that past 18 months. This collaboration covers the fields of non-rigid registration, augmented reality and haptics. Dr. Peterlik has now joined our team, but the collaboration will continue, in particular with the Centre of Biomedical Image Analyses in the area of biological image processing. This work is funded as part of the project entitled “Development of Reliable Methods for Automated Quantitative Characterization of Cell Motility in Fluorescence Microscopy”.
- University of Twente, Netherlands: collaboration with the Robotics and Mechatronics group at Twente University on flexible endoscopy simulation to develop a low-cost training system for medical students.
- Koc University, Turkey: we are collaborating with Prof. Cumatay Basdogan and 2 PhD students on a hyper-viscoelastic model which was fitted to real data obtained in rheological experiments on bovine liver. We are investigating the possibility to integrate this model into our method available in SOFA to significantly improve computation times.

Industrial collaborations

- Siemens: we are collaborating in the area of 2D-3D registration, augmented reality and interventional radiology.
- InSimo: beyond our initial work on the HelpMeSee project, we have started a collaboration on an ANR project focusing on retina surgery. We also obviously collaborate on the SOFA project, and the consortium, when created, will include representatives of the company.
- Altran: we collaborate with a special focus group within Altran (Medic@) on non-rigid registration. They sponsored a PhD thesis defended in June 2016 on elastic registration for hepatic surgery. We are continuing this collaboration on similar topics.